160
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 17 Apr 2024
160 points (94.9% liked)
Asklemmy
43971 readers
695 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
About the space elevator thing, even with mystical materials, it'd need to be 110.5km long with a counterweight. Assuming it could work at all on Earth (it can't, but let's assume it can) the amount of material required would be insane. I can't find where anyone has calculated the mass of carbon nanotubes needed, but I'm sure it's out there.
Assuming the material issue is solved somehow though, it's still going through the atmosphere. How does it handle those forces? It's untenable to have on Earth. It's possible on the moon, which would also require much less material since it has less mass.
Thats the coolest part, ie the old thing about a chain only being as strong as its weakest link, and a chain of sufficient length couldn't even hold a feather due to its own weight.
The CNT's (if near perfectly atomically aligned) and give them an INSANE tensile strength, some numbers I just googled puts steel at about 620 MPa (0.62 GPa) whereas the CNT's that have been made are pushing 80 GPa.
Obviously something this big is already gonna be a multi-governmental collaboration, but all you need then is to find the easiest reasonable sized meteor to DART our way, and catch that bitch on the way by.
For the atmosphere part, it would have to be an entirely geostationary orbit, and so really you would have the same winds as expected on skyscrapers (plus a bit). All this the tensile strength has more than enough wiggle room for.
Material costs aren't too bad too considering its nearly a hydrocarbon, and the strength only requires a fairly thin cable - in equivalent terms imagine the material for a road as long, we've got millions of km's of them, 100 is easy