this post was submitted on 12 Mar 2025
589 points (98.2% liked)
Comic Strips
16662 readers
2540 users here now
Comic Strips is a community for those who love comic stories.
The rules are simple:
- The post can be a single image, an image gallery, or a link to a specific comic hosted on another site (the author's website, for instance).
- The comic must be a complete story.
- If it is an external link, it must be to a specific story, not to the root of the site.
- You may post comics from others or your own.
- If you are posting a comic of your own, a maximum of one per week is allowed (I know, your comics are great, but this rule helps avoid spam).
- The comic can be in any language, but if it's not in English, OP must include an English translation in the post's 'body' field (note: you don't need to select a specific language when posting a comic).
- Politeness.
- Adult content is not allowed. This community aims to be fun for people of all ages.
Web of links
- !linuxmemes@lemmy.world: "I use Arch btw"
- !memes@lemmy.world: memes (you don't say!)
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Correct; multiplying by Ω doesn't distribute over addition.
Distributivity is a requirement for non associative algebras. So whatever structure is left is not one of those
What the fuck are you talking about? That's incorrect as a matter of simple fact.
Associativity is a property possessed by a single operation, whereas distribution is a property possessed by pairs of operations. Non-associative algebras aren't even generally ones that posses multiple operations, so how the hell do you think one implies the other?
Edit: actually, while we're on it, your first comment was nonsense too; you don't know what an identity is and you think that there's no notion of inverses without an identity. While that's generally the case there are exceptions like in Latin Squares, which describe the Cayley Tables of finite algebras for which every element can be operated with some other element to produce any one target element. In this way we can formulate a notion of "division" without using an identity.
Algebras have two operations by definition and the one thing they have in common is that the multiplication distributes over addition.
Yes, there is no notion of inverses without an identity, the definition of an inverse is in terms of an identity.
Stop posting.
Do you think a group isn't an algebra? What, by your definitions make an "Algebra" different from a "Ring"?