this post was submitted on 19 Jun 2025
46 points (96.0% liked)
Asklemmy
48943 readers
858 users here now
A loosely moderated place to ask open-ended questions
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 6 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
So... The medical professional is taking voice notes and then they get transcribed (ok, this is fine) - and then summarized automatically? I don't think the summary is a good idea - it's not a car factory, the MD should get to know my medical history, not just a summary of one.
You can't make an LLM only reference the data it's summarising. Everything an LLM outputs is a collage of text and patterns from its original training data, and it's choosing whatever piece of that data seems most likely given the existing text in its context window. If there's not a huge corpus of training data, it won't have a model of English and won't know how to summarise text, and even restricting the training data to medical notes will stop mean it's potentially going to hallucinate something from someone else's medical notes that's commonly associated with things in the current patient's notes, or it's going to potentially leave out something from the current patient's notes that's very rare or totally absent from its training data.
If you end up integrating LLMs in a way where it could impact patient care that’s actually pretty dangerous considering their training data includes plenty of fictional and pseudo scientific sources. That said it might be okay for medical research applications where accuracy isn’t as critical.