this post was submitted on 27 Oct 2025
5 points (100.0% liked)

math

1044 readers
1 users here now

General community for all things mathematics on @lemmy.world

Submit link and text posts about anything at all related to mathematics.

Questions about mathematical topics are allowed, but NO HOMEWORK HELP. Communities for general math and homework help should be firmly delineated just as they were on reddit.

founded 2 years ago
MODERATORS
 

cross-posted from: https://sh.itjust.works/post/48633930

Normally, we use a place-value system. This uses exponentials and multiplication.

1234
^^^^
||||
|||└ 4 * 10^0 = 4
||└ 3 * 10^1 = 30
|└ 2 * 10^2 = 200
1 * 10^3 = 1000

1000 + 200 + 30 + 4 = 1234

More generally, let d be the value of the digit, and n be the digit's position. So the value of the digit is d * 10^n^ if you're using base 10; or d * B^n^ where B is the base.

1234
^^^^
||||
|||└ d = 4, n = 0
||└ d = 3, n = 1
|└ d = 2, n = 2
d = 1, n = 3

What I came up with was a base system that was polynomial, and a system that was purely exponential, no multiplication.

In the polynomial system, each digit is d^n^. We will start n at 1.

polynomial:
1234
^^^^
||||
|||└ 4^1 = 4 in Place-Value Decimal (PVD)
||└ 3^2 = 9 PVD
|└ 2^3 = 8 PVD
1^4 = 1 PVD

1234 poly = 1 + 8 + 9 + 4 PVD = 22 PVD

This runs into some weird stuff, for example:

  • Small digits in high positions can have a lower magnitude than large digits in low positions
  • 1 in any place will always equal 1
  • Numbers with differing digits being equal!
202 poly = 31 poly
PVD: 2^3 + 2^1 = 3^2 + 1^1
8 + 2 = 9 + 1 = 10

In the purely exponential system, each digit is n^d^. This is a bit more similar to place value, and it is kind of like a mixed-base system.

1234
^^^^
||||
|||└ 1^4 = 1
||└ 2^3 = 8
|└ 3^2 = 9
4^1 = 4

1234 exp = 4 + 8 + 9 + 1 PVD = 22 PVD

However it still runs into some of the same problems as the polynomial one.

  • Small digits in high positions can have a lower magnitude than large digits in low positions (especially if the digit is 1)
  • The digit in the ones place will always equal 1
  • Numbers with differing digits can still be equal
200 exp = 31 exp
PVD: 3^2 = 2^3 + 1^1
9 = 8 + 1

So there you have it. Is it useful? Probably not. Is it interesting? Of course!

you are viewing a single comment's thread
view the rest of the comments
[–] DeltaWingDragon@sh.itjust.works 4 points 3 months ago

That only works in the polynomial one, and it is very trivial. Like trival^^2 (tetration).

I almost added a challenge to it, which was this:

Try to find the smallest number of symbols where you could represent any integer!

until I realized you could just use all 1s in the polynomial system, like you mentioned.