28
submitted 3 weeks ago by yogthos@lemmy.ml to c/technology@hexbear.net

cross-posted from: https://lemmy.ml/post/24102825

DeepSeek V3 is a big deal for a number of reasons.

At only $5.5 million to train, it's a fraction of the cost of models from OpenAI, Google, or Anthropic which are often in the hundreds of millions.

It breaks the whole AI as a service business model that OpenAI and Google have been pursuing making state-of-the-art language models accessible to smaller companies, research institutions, and even individuals.

The code is publicly available, allowing anyone to use, study, modify, and build upon it. Companies can integrate it into their products without paying for usage, making it financially attractive. The open-source nature fosters collaboration and rapid innovation.

The model goes head-to-head with and often outperforms models like GPT-4o and Claude-3.5-Sonnet in various benchmarks. It excels in areas that are traditionally challenging for AI, like advanced mathematics and code generation. Its 128K token context window means it can process and understand very long documents. Meanwhile it processes text at 60 tokens per second, twice as fast as GPT-4o.

The Mixture-of-Experts (MoE) approach used by the model is key to its performance. While the model has a massive 671 billion parameters, it only uses 37 billion at a time, making it incredibly efficient. Compared to Meta's Llama3.1 (405 billion parameters used all at once), DeepSeek V3 is over 10 times more efficient yet performs better.

DeepSeek V3 can be seen as a significant technological achievement by China in the face of US attempts to limit its AI progress. China once again demonstrates that resourcefulness can overcome limitations.

all 24 comments
sorted by: hot top controversial new old
[-] AtmosphericRiversCuomo@hexbear.net 12 points 3 weeks ago

These type of posts go over like a lead balloon here because people don't want to accept the material reality of what's happening with this tech, but it's undoubtedly a stroke of luck for all of us that ghoulish companies like openai don't have any special sauce here. Open source models have consistently been able to keep up or at least get really close to the frontier model performance from companies that spend billions only to see their efforts replicated by these abaolute Chads from China.

[-] yogthos@lemmy.ml 18 points 3 weeks ago

The amount of hate this tech gets is phenomenal, and most of it is completely misdirected. The problems that people ascribe to it aren’t inherent in the technology, but are simply symptoms of underlying social problems in a capitalist society.

For example, people complain that it takes jobs away, but the whole idea that we have to work for the sake of work is idiotic to begin with. Technology that frees up people from work should create more free time for people to enjoy. The reason that’s not happening is because capitalism is not a rational economic system.

Another common argument is that it’s very resource intensive and wastes energy. This is true, but there’s no reason to believe this won’t be optimized. In fact, we’ve already seen a lot of optimizations happen in just a few years that now make it possible to run models that used to require a data centre to run on a laptop.

However, more fundamentally, wasting energy is once again an aspect of the capitalist system itself. Before AI we saw stuff like crypto, NFTs, and so on. Much of the technology that’s developed under capitalism ends up being frivolous or even actively harmful. So, it’s not generative AI that’s the problem, but the social system that guides allocation of labour and resources.

In particular, artists are still clinging to an artisan model focusing on individual exceptionalism and intellectual property rights. These reactions, rooted in petty-bourgeois ideology, ultimately serve to reinforce inequality and empower corporations rather than protect artists.

The core contradiction here is between the increasingly socialized nature of artistic production in a globalized, digital world and the continued emphasis on private ownership. It's a symptom of capitalist development that leads to the proletarianization of artists as they are displaced by industrial competition.

The real solution lies in worker solidarity, unionization, and ultimately, the socialization of property. The enemy is not AI itself but the capitalist market that shapes its deployment, a system that already produces formulaic, profit-driven art. The focus on the underlying class struggle is how we get a future where technology serves the collective good rather than further entrenching existing power structures. This was a brilliant write up on the subject incidentally https://redsails.org/artisanal-intelligence/

[-] AtmosphericRiversCuomo@hexbear.net 10 points 3 weeks ago

GOOD POST and sensical take that goes beyond the knee-jerk reactions.

[-] yogthos@lemmy.ml 6 points 3 weeks ago
[-] redtea@lemmygrad.ml 4 points 2 weeks ago

Yes, I'm questioning my status as hater.

[-] Incremental_anarchist@hexbear.net 1 points 2 weeks ago

I'm aware that anarchists tend to be against copyright law, but I find it hard to believe that a cashless society that relies on mutual aid wouldn't allow artists to say "hey I'm giving you this art for free, but I don't want you using it for training AI or otherwise reproducing it without my consent". In fact, I'd expect artists to probably share stories of people who violated their consent wrt their art, and refuse to give further art to those individuals, per voluntary association. Do anarchists believe that those kinds of limitations simply can't be placed upon gifts?

[-] yogthos@lemmy.ml 1 points 2 weeks ago

Since I'm not an anarchist, so can't really answer that one. :)

[-] JoeByeThen@hexbear.net 8 points 3 weeks ago* (last edited 3 weeks ago)

It's pretty impressive. I'm experimenting with some prompts I've thrown at OpenAI's 4o and getting very similar responses. Some even better tbh.

https://chat.deepseek.com/

[-] yogthos@lemmy.ml 4 points 2 weeks ago

It's a real game changer, and the trick of using window into a larger token space is pretty clever. This kind of stuff is precisely why I don't take arguments that LLMs are inherently wasteful and useless very seriously. We're just starting to figure out different techniques for using and improving them, and nobody knows what the actual limits are. I'm also very optimistic that open source models are consistently catching up and surpassing closed ones, meaning that the tech continues to stay available to the public. This was a pretty fun write up for a little while back, but still holds up well today https://steve-yegge.medium.com/were-gonna-need-a-bigger-moat-478a8df6a0d2

[-] JoeByeThen@hexbear.net 3 points 2 weeks ago

Ah yea, I remember when the We Have no Moats article dropped. It's wild because for years I was on the cutting edge of what was going on; Tinkering with java based neural network apps , then python based tensors, and right around when Transformers dropped I was pulled away from my hobbies for familial reasons and I've been playing catch up ever since. Everything is happening very fast and I've got so much to do that I just can't find time to stay on top of it all. Or have the money, tbh. But, yeah, lot of potential that the Left (in these parts) have plugged their fingers into their ears about. Especially as resistance is moving in a more {physical way|luigi-dance}, but the infrastructure of our oppression is built on the cloud.

I saw this interesting video the other day. Basically since some of these mini-PCs share their memory with the onboard gpu, they can load up the 70b models. Slow as hell, but if you're running everything through a queue it'd be pretty handy.

https://www.youtube.com/watch?v=xyKEQjUzfAk

[-] yogthos@lemmy.ml 3 points 2 weeks ago

I've kind of given up trying to keep up with the details as well, stuff is moving way too fast for that. I'm really encouraged by the fact that open source models have consistently managed to keep up with, and often outperform commercial ones.

There's also stuff like petals that's really exciting. It's basically similar idea to SETI@home and torrents where you just have a big network doing computing so you can amortize the work that way. This seems like a really good approach for running big models leveraging volunteer resources.

https://github.com/bigscience-workshop/petals

[-] JoeByeThen@hexbear.net 3 points 2 weeks ago

There's also stuff like petals that's really exciting. It's basically similar idea to SETI@home and torrents where you just have a big network doing computing so you can amortize the work that way. This seems like a really good approach for running big models leveraging volunteer resources.

Ah, I've seen that before. Nice to see it's still continuing. Its ability to run private swarms is exactly the sort of thing the left should be all over.

[-] yogthos@lemmy.ml 3 points 2 weeks ago

Its ability to run private swarms is exactly the sort of thing the left should be all over.

exactly!

[-] JoeByeThen@hexbear.net 4 points 2 weeks ago

I mean, I will say that I see less of the really rabid anti-AI stuff around hexbear now that Ulysses_T has left us, but the past couple of years has really poisoned the well.

[-] yogthos@lemmy.ml 3 points 2 weeks ago

Ulysses_T really hated LLMs with a passion 🤣

[-] HexReplyBot@hexbear.net 1 points 2 weeks ago

I found a YouTube link in your comment. Here are links to the same video on alternative frontends that protect your privacy:

[-] Inui@hexbear.net 4 points 3 weeks ago* (last edited 3 weeks ago)

I skimmed the article so maybe I missed it, but how is it for language learning? It vaguely mentions it in a few places. I've used different Chinese models specifically because I assumed they'd be trained on more native Chinese content, but as your post alludes to, many of them are still poor in this area and very heavily focused on mathematics and programming.

I just want something that even vaguely understands concepts like a "question word" to help correct my grammar as I learn, instead of trying to end every sentence in 吗? like ChatGPT.

Edit: they have benchmarks on their Github that look better or comparable to similar models. https://github.com/deepseek-ai/DeepSeek-V3?tab=readme-ov-file

[-] yogthos@lemmy.ml 4 points 3 weeks ago

Ah that's a neat use case actually. I've been using an app on the phone for learning, but haven't tried using a model to practice chatting with.

[-] frippa@lemmy.ml 2 points 2 weeks ago

China can't stop winning

this post was submitted on 27 Dec 2024
28 points (100.0% liked)

technology

23423 readers
376 users here now

On the road to fully automated luxury gay space communism.

Spreading Linux propaganda since 2020

Rules:

founded 4 years ago
MODERATORS