view the rest of the comments
Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try !politicaldiscussion@lemmy.world or !askusa@discuss.online
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
Depends on what your ultimate goal is. Being able to solve common problems? Sure.
My immediate goal is to become as efficient as possible at problem-solving, especially for exams or competitions. But I do wonder if this approach might leave gaps in my understanding in the long term.
The theory makes you understend why a method works for a certain problem. A lot of exams try to trick the taker by giving problems that are almost solvable with just the toolbox but need a bit extra trick to solve which theory can help. But there again i find that simply knowing the specific trick is enough to do well.
But personally believing that is in any way important to succeed in exams has lead me to waste too much time. If you find that you have prepared well enough to solve any problems across math for an exam, it would then be ok to then cover the theory.
So in essence, just keep doing what you're doing.
It’s reassuring to hear that focusing on problem-solving isn’t necessarily a drawback, as long as I’m prepared for a wide variety of questions. I think I’ll stick with my method for now and revisit theory selectively when I feel gaps or curiosity arise.